Exact Traveling Wave Solutions for Coupled Nonlinear Fractional pdes
نویسندگان
چکیده
In this paper, the ( / ) G G -expansion method is extended to solve fractional differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, certain fractional partial differential equations can be turned into ordinary differential equations of integer order. For illustrating the validity of this method, we apply it to find exact solutions with parameters for four fractional nonlinear partial differential equations namely, the time fractional nonlinear coupled Burgers equations, the time fractional nonlinear coupled KdV equations, the time fractional nonlinear Zoomeron equation and the time fractional nonlinear Klein-Gordon-Zakharov equations . When these parameters are taken to be special values, the solitary wave solutions are derived from the exact solutions. The proposed method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation
In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.
متن کاملOn the Exact Solution for Nonlinear Partial Differential Equations
In this study, we aim to construct a traveling wave solution for nonlinear partial differential equations. In this regards, a cosine-function method is used to find and generate the exact solutions for three different types of nonlinear partial differential equations such as general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKDV) and general equal width wave equ...
متن کاملExact Traveling Wave Solutions of Nonlinear PDEs in Mathematical Physics
In the present article, we construct the exact traveling wave solutions of nonlinear PDEs in mathematical physics via the variant Boussinesq equations and the coupled KdV equations by using the extended mapping method and auxiliary equation method. This method is more powerful and will be used in further works to establish more entirely new solutions for other kinds of nonlinear partial differe...
متن کاملNew Exact Traveling Wave Solutions for a Class of Nonlinear PDEs of Fractional Order
In this article, the (G ′ /G)-expansion method has been implemented to find the travelling wave solutions of nonlinear evolution equations of fractional order. For this, the fractional complex transformation method has been used to convert fractional order partial differential equation to ordinary differential equation. Then, (G ′ /G)-expansion method has been implemented to celebrate the serie...
متن کامل